A Probability Method for Comparing Varieties against Checks
T. A. Jones

ABSTRACT

Combining results of tests conducted over a period of years is
desirable when the tests are conducted at a single location or across
locations known not to exhibit large nonrandom, predictable geno-
type X location interactions. But when cumulative reports across
tests are attempted, complications arise because of unbalanced struc-
ture. The objective of this work was to derive 2 method to compare
varieties against checks using accumulated data in the usual situa-
tion, where varieties are changing over the years the accumulated
tests are conducted. The resultant probability method is easy to use,
easy to present in an extension publication, and easy to interpret by
the extension audience. It tests the null hypothesis that a variety
equals a check in performance and permits calculation of the prob-
ability that the variety equals a check in performance when the null
hypothesis is rejected (type 1 error). Calculations are simplified if
data are coded and standardized for each test year. The method was
used on an unbalanced data set yield of 23 varieties and 35 test
years of alfalfa (Medicago sativa L.) grown near Ames, JA. Prob-
ability of one-tailed Type I error ranged from 0.47 to near 0.00 when
data were coded on a test-year mean basis, and from 0.86 to near
0.00 when data were coded on the basis of the mean of ‘Saranac’
and ‘Vernal’. The probability method determined that no more than
seven test years were necessary to evaluate these varieties.

UNNETT’S PROCEDURE (5) is often recommended
for comparing all means with a control in a sin-
gle experiment (13). Dunnett’s critical value is tabu-
lated for an experiment-wise error rate. However, be-
cause comparison with a check variety is often an
objective in variety testing, a comparison-wise error
rate is more appropriate. Combining results across tests
conducted at a single location or across locations
known not to exhibit significant amounts of nonran-
dom, predictable genotype X location (G X L) inter-
action is desirable. But this makes the data set un-
balanced because typically varieties are included in
many tests, but not all varieties are included in every
test. Varieties included in tests change from year to
year as new varieties become available and old vari-
eties become obsolete (7).

Agricultural experiment stations in Illinois, Iowa,
Kansas, Michigan, Minnesota, Missouri, Nebraska,
North Dakota, Ohio, Oklahoma, South Dakota, and
Wisconsin participate in the Central Alfalfa Improve-
ment Conference (CAIC). Of these 12 states (1-4, 6,
8-11, 14, 15, K.D. Kephart, 1987, personal commu-
nication), Iowa, Michigan, Nebraska, and North Da-
kota report results accumulated at individual loca-
tions since 1960, 1964, 1963, and 1959, respectively.
Minnesota and Wisconsin report results accumulated
over all locations since 1959 and 1982, respectively.
Ilinots, Kansas, Missouri, Ohio, Oklahoma, and South
Dakota do not report cumulative results.

Current procedures used in reporting alfalfa yield
test results emphasize comparison with a check (7).
Of 12 states surveyed, seven express yield as a per-
centage of Vernal. Nebraska uses the mean of two
checks, Missouri uses the mean of three checks, Iili-
nois uses the mean of four checks, and Kansas and
Oklahoma use the test mean. The CAIC has endorsed
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the use of Vernal, ‘Baker’, ‘Riley’, and ‘Saranac AR’
as checks, but only Illinois, Iowa, and North Dakota
have followed this recommendation in recent years
(J.B. Ogg, 1986, personal communication). Though
expressing yield of a variety as a percentage of a single
check is the most common procedure for combining
data across tests, Hill and Rosenberger (7) judged it
to exhibit the greatest prediction error of seven meth-
ods they compared. Their other methods included use
of the predicted difference between varieties and
checks, least-squares means (LSM) calculated in a two-
way (varieties and tests) analysis of variance
(ANOVA), LSMs calculated in a two-way ANOVA
with each test weighted for its variance, and three var-
iations of best linear unbiased prediction (BLUP). The
BLUP methods exhibited the smallest prediction er-
rors.

Hill and Rosenberger’s (7) objective was to deter-
mine which of their methods for estimating mean
yields from unbalanced, combined yield tests had the
smallest prediction error. An alternate approach is to
consider the null hypothesis that a variety equals the
designated check or mean of checks in performance,
based on the combined data. The probability that any
given variety, in fact, equals the check when the null
hypothesis is rejected is the Type I error. This ap-
proach retains the intuitive appeal of providing direct
comparison with the check. The objective here was to
develop a method to calculate this probability. It was
then applied to 35 test years of unbalanced data col-
lected from alfalfa yield tests near Ames, IA, con-
ducted by the Iowa Agricultural and Home Economics
Experiment Station.

MATERIALS AND METHODS

The tests were rotated among seven tile-drained fields in
the Clarion-Nicollet-Webster soil association 13 km west of
Ames, IA (10). These soils were classified in the order of
mollisols and the suborder of aquolls. A new test was planted
every spring and harvested the establishment year if growth
and weed control permitted. Tests were subjected to a four
cut-per-year management for the following 3 yr before being
terminated. Thus, four tests were in rotation in any one year,
one in the establishment year and three in production years.
All tests included four replications of a lattice design. Tests
were fertilized with P and K in accordance with soil test
recommendations.

Total annual yield of production years was used in this
study. Establishment year data were not considered. Twenty-
three varieties were present in at least 12 of the 35 test years
since 1972 and were included in this study. Two of the 23,
Saranac and Vernal, were present in all 35 test years. Fifteen
of the 23 were proprietary varieties and were assigned the
letters A to O.
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Before analysis, spreadsheet software coded and standard-
ized data in each test year. To code data for test-year effect
we used the test-year grand mean (Method 1) or mean of
Saranac and Vernal, the two varieties included in every test
year (Method 2). To standardize, coded data were divided
by the standard error of a variety mean (SEM). The SEM
was calculated from the least significant difference (LSD) of
each test according to the formula

SEM = LSD(0.05)/ (1(0.05) X 1.4]14).

Degrees of freedom (df) for error of the 35 test years ranged
from 63 to 189.

Using appendix Eq. [5, 8, and 10], estimates of z for the
null hypothesis that a variety was equal to Vernal were cal-
culated as

.ﬁ/ — Vi

z= 172>
1 - 1 -

[—2[11, + R/n/(n/ - l)] + _g[nj' + R/'ni'(n/'_l)]]
n; n;

where ¥, is the mean of a variety over all n; test years it is
entered, 7, is the mean of the check over all »; test years,
and R, and R; are means of correlation coefficients between
all test years including variety j and check j', respectively,
weighted for degrees of freedom (appendix Eq. [8]).
Probabilities of Type I error corresponding to these z val-
ues were calculated from a table of normal curve areas as
0.5 — (area between 0 and z) for positive z and 0.5 + (area
between 0 and z) for negative z. :

RESULTS AND DISCUSSION

When calculated according to Method 1, on a test
year mean basis, the probability of Type I error ranged
from P = 0.47 for Saranac to nearly P = 0.00 for
proprietary variety F (Table 1). When calculated ac-
cording to method 2, on a Saranac/Vernal mean basis,
the probability of Type I error ranged from P = 0.86
for ‘Dawson’ to nearly P = 0.00 for proprietary va-
riety F (Table 2). Ranks of variety performance as

Table 1. Ranking of 22 varieties in order of probability of failure
to exceed Vernal (Type I error) on a test-year mean basis (method
1.

determined by the two methods were correlated at r
= 0.92 (P < 0.01). Most of the discrepancy between
ranks was among the higher-yielding varieties. The P-
values, as calculated in either method, have no known
distribution themselves. They are intended for com-
parison of a variety against a check, not against every
other variety.

The advantage of Method 2 relative to Method 1 is
that the same two checks are used to code data for
test-year effect in all test years. Thus, variety effects
are not confounded with test-year effects. Using LSMs
to code data for test-year effects also would success-
fully eliminate this problem. Method 1 suffered from
the fact that the varieties tested over the years were
improving in performance, increasing the test-year ef-
fect over time. Least-squares analysis indicated that
yields increased 0.31 Mg ha ' yr~'. Thus, the test-year
effect was confounded with genetic effects. Because va-
rieties were not all tested in the same test years, in
Method 1 varieties tested in earlier test years were at
an advantage relative to varieties tested in later test
years. This made Method 1 a conservative one for
declaring newer varieties improved over older ones.
As an example, because ‘Kanza® and Dawson were
entered only in earlier test years and Vernal was en-
tered in all test years, Method 1 ranked Kanza and
Dawson above Vernal while Method 2 ranked them
below Vernal. The only advantage of Method 1 over
Method 2 is that the influence of genotype X envi-
ronment (G X E) interaction on the test-year effect,
used for coding, is smaller in method 1 because of the
larger number of varieties used to calculate it.

Rank of variety performance calculated by the stan-
dard method, as percentage of Vernal, was correlated
with rank using Method 1 at r = 0.88 (P < 0.01) and
with Method 2 at r = 0.98 (P < 0.01). The very high
correlation of the standard method and Method 2 is
partially due to their similarity, one correcting for per-
formance of Vernal and the other correcting for per-
formance of Vernal and Saranac, a variety which per-

Table 2. Ranking of 22 varieties in order of probability of failure
to exceed Vernal (Type I error) on a Saranac/Vernal mean basis
(method 2).

% of Test Deviation Probability % of Test Deviation Probability
Variety Vernal years from Vernal z Z<s0 Variety Vernal years from Vernal Z Z<0
no. Mg ha™! no. Mg ha~!

F 109 20 6.18 3.13 0.00 F 109 20 8.02 4.06 0.00
B 105 12 6.63 3.03 0.00 A 110 14 7.73 4.01 0.00
K 109 17 5.81 2.99 0.00 K 109 17 7.65 3.94 0.00
D 109 17 5.78 2.98 0.00 D 109 17 7.62 3.92 0.00
C 107 21 5.81 2.92 0.00 H 108 14 7.86 3.68 0.00
A 110 14 5.64 2.93 0.00 C 107 21 6.92 3.48 0.00
J 105 20 5.48 2.91 0.00 Riley 107 22 6.45 3.25 0.00
H 108 14 6.21 2.87 0.00 N 107 23 6.03 3.02 0.00
Riley 107 22 4.90 2.47 0.01 M 107 14 5.84 3.02 0.00
I 105 12 4.76 2.26 0.01 B 105 12 6.31 2.88 0.00
N 107 23 4.44 2.23 ~0.01 1 105 12 5.52 2.62 0.00
M 107 14 4.12 2.14 0.02 J 105 20 4.11 2.18 0.01
G 102 17 3.79 1.84 0.03 Saranac AR 105 20 3.70 1.94 0.03
(o} 103 19 3.26 1.69 0.05 (o] 103 19 3.45 1.79 0.04
Saranac AR 105 20 2.83 1.49 0.07 Baker 104 25 3.38 1.68 0.05
Baker 104 25 2.03 1.01 0.16 G 102 17 3.32 1.61 0.05
E 102 16 1.57 0.80 0.21 L 104 14 2.47 1.27 0.10
L 104 14 1.06 0.55 0.29 E 102 16 2.44 1.24 0.11
Agate 100 26 1.03 0.51 0.31 Agate 100 26 0.55 0.28 0.39
Kanza 95 15 0.54 0.29 0.39 Saranac 100 - 35 0.16 0.08 047
Dawson 96 15 0.42 0.23 0.41 Vernal 35

Saranac 100 35 0.16 0.08 0.47 Kanza 95 15 -1.92 —-1.04 0.85
Vernal 35 Dawson 96 15 -0.24 -1.10 ~0.86
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formed similarly to Vernal. The difference in the
correlation between the standard method and Method
1 (0.88) and the correlation between the standard
method and Method 2 (0.98) is probably related to the
greater confounding of genetic and test-year effects in
Method 1 relative to Method 2. Here, with numbers
of tests years 12 and greater, rank of varieties using
the probability method was similar to rank using the
standard method (Tables 1, 2). But unlike the stan-
dard method, the probability method considers the
number of test years directly in the calculation of its
parameters, which may be critical when conclusions
are being drawn from only a few test years of data.

Method 2 is superior to Method 1 when testing of
older varieties is being terminated as testing of newer
varieties is beginning, because in Method 2 confound-
ing of genetic effects with test-year effects is mini-
mized. The objection to Method 2, the confounding
of G X E interaction with test-year effects, would be
minimized if more checks were included in every test.
This would improve estimation of the coding terms,
which are less precise in Method 2 because they are
calculated with fewer observations than in Method 1.
The CAIC recommends a standard set of four check
varieties for inclusion in midwestern variety trials,
which addresses this concern. These checks, however,
are consistently used by only three of the 12 CAIC
agricultural experiment stations. The checks are also
updated every several years, so they do not remain
the same over a long period of time as suggested here.

The probability method has three important prac-
tical attributes. First, the probability method is simple
for calculation and presentation. This is especially im-
portant for a method to be used for extension pur-
poses. Data are easily coded and standardized with
values currently present in variety test reports. The
number of test years of any variety j under test (n)
and check (n;) and means of any variety j under test
(#,) and check (7,) are easily computed. Weighted
means of correlation coefficients (R, and R;) from ap-
pendix Eq. [8] can be calculated by hand or with a
simple computer program. Results can be presented
in a single column of probabilities rather than presen-
tation of separate results for each test which may not
agree, confusing the reader.

Second, a straightforward policy, established in ad-
vance of testing, can be used to interpret test results.
For example, varieties would be identified as superior
to the check only when enough tests were conducted
and paid for, in the case of proprietary varieties, to
show that the probability of Type I error had fallen
below a certain threshold, e.g., 0.05 or 0.01. Only then
would the variety be recommended over the check.
Extension publications would state that use of vari-
eties not tested sufficiently for the error to fall below
the threshold could not be considered better than the
check. An advantage of the probability method is that
it provides a well defined cutoff point for making this
decision, rather than suggesting care by the reader be-
fore choice of any variety with data from only a few
test years.

Producers are most familiar with varietal ranking
based on percentage of a check. Though aware that
such rankings are influenced by variable numbers of

test years among varieties and variable precision of
tests, producers commonly use rankings verbatim. An
extension effort will be needed to educate producers
about the ability of the probability method to deal
with these problems. Though the Type I error concept
will be new to most in the extension audience, it is
easily understood when accompanied with an exam-
ple. Obviously superior varieties will soon pass the
probability threshold for recommendation, while new
varieties marginally better than the check will require
additional testing before recommendation. Others, no
better than the check, will fail to decrease in proba-
bility of Type I error and will not be recommended
over the check.

Third, the probability method is able to determine
appropriate sample sizes. Tests should be continued
until the response to the null hypothesis, that a variety
equals the check in performance, is clear. This assures
that enough testing has been done to settle the ques-
tion, at least at the predetermined threshold level of
probability. The method also allows waste of money
and resources, because of continued testing after the
threshold probability has been reached, to be elimi-
nated. This is a boon to researchers burdened with
needlessly large numbers of entries and to companies
charged for unnecessary testing. In this experiment
weighted means of correlation coefficients averaged
0.37. Using appendix Eq. [10], it was clear that testing
beyond seven test years was redundant (Fig. 1). Thus,
it is reasonable that when number of test years is well
above this number, as in this experiment, the standard
method gives similar resuits to method 2 (r = 0.98).
A good estimate of the average correlation coefficient
and the range that can be expected under normal con-
ditions should be acquired for any testing program
using the probability method. '

The probability method is appropriate for data
combined with the intention of making recommen-
dations for a particular geographical area. The model
used in the probability method does not include a G
X E interaction term and makes no assumptions re-
garding G X E interaction effects. For this reason, test
years exhibiting nonrandom, predictable G X L in-
teractions should not be combined. Combining data

1.2 _
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n

Fig. 1. Standard error of the difference between yield performance
of Vernal and a variety under test calculated from appendix Eq.
[10]. Numbers of test years (n) and various weighted means of
correlation coefficients among test years (R) are indicated. Vari-
ance (Vernal) = 0.372.
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from test years exhibiting genotype X year interac-
tion, however, is within the limits of the probability
method, because the environment of any year is ran-
dom, or at least unpredictable. To avoid bias in in-
terpretation, the test years of the data set must be a
sample of the population of test years to which infer-
ence will be made. Scientists conducting variety tests
have long avoided combining data from locations with
distinct climates or soils because confounding large
amounts of G X E interaction is likely. This need is
not lessened by this or any other statistical procedure.
Cluster analysis can be used to group together loca-
tions with a predetermined maximal degree of heter-
ogeneity.

Any two test years have a correlation coefficient less
than 1.0 because of experimental error and G X E
interaction. The probability method acknowledges this
effect of the correlations among test years on the de-
nominator of the z statistic. In contrast, a conven-
tional LSD, not designed for combined data, assumes
independence of all observations and thus does not
consider correlations. Test years may be correlated to
varying degrees because of similarities in climate,
weather, or soils. Inclusion of the correlation coeffi-
cients increases the denominator of the z statistic by
increasing the standard error (appendix Eq. [5]). The
lower the correlation coefficients among test years, the
more useful additional test years are in lowering the
standard error (Fig. 1). If the correlation coefficients
all equal 1.0, no reduction in standard error results
from additional testing because no additional infor-
mation is generated. Increases in the denominator be-
cause of increased n are exactly balanced by increases
in the numerator because of increased sums of cor-
relation coefficients. For the 23 varieties used here,
the weighted mean of correlation coefficients averaged
0.37, with a range extending from 0.26 for Dawson
and Kanza to 0.55 for variety B. At r = 0.37 little
reduction in standard error was apparent after the sev-
enth test year of data (Fig. 1). Even at r = O little
reduction in standard error was apparent after the tenth
test year of data.

Whereas the intention of the methods described by
Hill and Rosenberger (7) was to improve estimates of
variety means, the intention of the probability method
is to estimate the probability of the Type I error as-
sociated with the rejection of the null hypothesis. Thus,
these two methods are not mutually exclusive and
combining them into one procedure may be desirable
in a research context, where need for simplicity is of
secondary importance.

Appendix
Model
Let
Yi=ut+t+v+ey,
where

Y, = mean of all replicates of annual yield for va-
riety j in test year i,
u = fixed overall mean,
t; = fixed effect of test year i, as described in Ma-
terials and Methods,
v; = random effect of variety j, and

e; = random measurement error of variety j in test
year i, including any interaction between ¢; and

V.
If all Y,j’sj are coded by subtracting (7 + £) and stand-
ardized by dividing by §,, the estimated standard error
of Y, then

j’ij= Yij _Au—?i=vj-f_4eq- [1]

Assumptions

The theory presented below assumes that the e;’s in
a test year are independently and identically normally
distributed with mean = 0 and variance = ¢2. Thus,

cov (e, e;) = 0. [2]

Also, the variety effects must be independently and
identically normally distributed with mean = 0 and
variance = o2,

In addition, varieties j under test must be independent of
check j/, which is fulfilled when plots are properly random-
ized within and between test years. Thus,

cov (v, v;) = 0. 31
Also, variety effects must be independent of the e,’s. Thus,
cov (v, e;) = cov(v,e;) =0. 4}

Test Statistic

The difference between two standardized treatment
means, y.; and p.;, divided by its estimated standard
error, approximately conforms to a z distribution. The
hypothesis that the true standardized treatment means
are equal may be tested with a one-tailed z test:

b 2N 5
i, = ol

The degrees of freedom of this quantity will always be
large in practice because they are derived from the degrees
of freedom of the s’s used to standardize the data. After
even a single test year of a variety testing program, enough
degrees of freedom are available to justify the use of a z
distribution instead of a ¢ distribution. The quantity in [5]
is distributed only approximately as z, not only because of
a finite number of degrees of freedom, but also because of
errors in the estimation of values needed for its calculation.
The coding and standardizing terms [1], used in the nu-
merator of [5], and the correlation coefficients among test
years, to be used for calculation of the denominator of [5],
are estimated with error.

The standard error in the denominator of {5] is the square
root of the variance, where

var (J., — y.;,) = var (3.) + var () — 2cov (3., ¥.,)[6]

Variance of a Mean
The variance of a mean can be expressed as

var(?.j)évar[(y'j+y2’+ +y,,‘,,)}=

n;

l n; non;
L2y var ) + };2 cov ¥ ¥l
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and likewise for var (¥.;). But because data are stand-
ardized,

var (y,) = var (yy) = var (y)) = 1

where these are the diagonal elements of the correla-
tion matrix of the n, test years for variety j. Now, it
is well known that a correlation coefficient is the co-
variance of standardized variables (12). Thus,

cov (yija yi'j) = r;

the correlation coefficient between test yeérs iand /',
where each r,, (i#1') is an off-diagonal element of the
correlation matrix. So if data are standardized,

o+ Z r, 0

[y mcludmgj

var (J—/. j)

where the summations are over pairs of test years i
and 7, both including variety j, and likewise for var

;).
Because
v +e v toe
rii = cov (¥, ¥ij) = cov [T!’ -~ " }

1

1
;s: [var (v) + cov (v, &)

+ COV( (478 ) + cov (eu’ ei‘.i)]
2 + cov (e; e)
- g T covie, ey 4
o by [1] and [4]),

the correlation between test years i and /' consists of one
term corresponding to the variance of the variety effect and
another term corresponding to the covariance between error
effects in test years i and i'. The cov (¢, ¢;) < var (¢;)) =
o2 when G X E interaction is present because the interaction
is included in the ¢, term in the model. Thus, the correlation
coefficient between test years exhibiting no G X E interac-
tion will be higher than that between test years / and i’ ex-
hibiting G X E interaction.

If the correlation coefficients are based on different de-
grees of freedom, it is appropriate to weight them by their
individual degrees of freedom, similar to weighted variances
(12). In this case, in Eq. [7]

> ., is replaced by

i=] =i
A v . -
i¢ including j

o

;2 r. (df,)
(Il mcludmg/

/;:Zl df,.“

i mcludmg i

) n{n,—1) = Rn(n—1), [8§]

where degrees of freedom (df) of r, equal the number of
varieties common to test years i and i/ — 2, and R, equals
the mean of correlation coefficients between all test years
including variety j and check j/, weighted for df.

Covariance Between Two Means

The covariance between the standardized treatment
means of variety j under test and check j' can be ex-
pressed as cov (., 7.;)=

COV[(yU + Y+ ...+ yn,j)’
n;
Oyt + ...+ ) -
n,

nn; [122 cov (,VU, y:/) + Zz cov (yu’ yu)]

i#1

But because data are coded, yes i = 7,

1
cov (Vi Viy) = Py [cov (v, + e, v, + ;)]

1
=3 [cov (v, v;) + cov (v, e;)

+ cov (e, v;) + cov (e e;)]
=0

by Eq. [2, 3, 4].
So,

n, n.

,Z,Zl cov (¥ yiy) = 0, and

ﬂn,

’_Zz cov (¥, Vij) =

=1

0, likewise.
For coded data, then,

cov (3., 7.;) = 0. 9]

Variance of the Difference Between Two Means
For coded and standardized data, then, by Eq. [6,

7, 9], var(y,—y.) =
—(n + ) +
i=] l~|
i mcludmgj
n, n,
—(n + [10]
I— I—l
i lncludmgj

Eq. {10] is used to calculate the denominator of z in
Eq. [5]). For

H;:p,=7%, and
H:3,>7,;,

the value of z is associated with a probability that 7.,
fails to exceed y., when the null hypothesis is rejected
(Type I error) for a one-tailed test. This is the prob-
ability that is used to compare varieties against checks
in the probability method (Tables 1, 2).
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Reduction to a Familiar Expression

It is easily seen that Eq. [10] simplifies to a familiar
expression for the variance of the difference between
two means in the balanced case when all correlation
coefficients = 0. For example, if variety means among
test years are independent, an assumption made by
the LSD but not the probability method, Eq. [10] re-
duces to

NS
var (3., — y;) = -+ —.

n;

Then, if the data are not standardized and variances
of test years are assumed equal,
2

| Q
N

var (Y, - Y,;)=— +

=

9

Then, if n, = n, = n,

- — 202
var (¥, — V) = %

the quantity used to represent variance of the differ-
ence in two means when calculating the LSD.
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LETTER TO THE EDITOR

Comment on a Probability Method for Comparing
Test Varieties with a Check

Evaluating variety tests accumulated in consecutive years,
where varieties may change over the years, is a frequent task.
A common approach is to compare each variety with a check.
One is often faced with the problem that the check is grown
in more years than the test variety. For the comparison to be
meaningful it is desirable to use all information available,
which includes those test years in which the check was grown,
but during which the test variety under consideration was not
grown. Statistical difficulties in the analysis of such data arise
because they are unbalanced. Jones (1988) proposed a method
for unbalanced data recorded at a single location, which yields
the probability that a given variety is not better than the check.
The procedure is based on the Type I error of a test of the
null hypothesis that the variety equals the check. A major
drawback of this method is that it leads to biased probability
estimates in the presence of variety X year interactions. In
this letter, two simple alternatives, i.c., the paired z-test and
weighted least squares analysis, are offered which are appro-
priate in case of uncorrelated errors and interactions. It will
be argued that Jones’ approach is not relevant in most practical
circumstances because the number of years required is prohibi-
tive, and because plant breeders usually test promising cultivars
at more than just one location.

Problems
The following are statistical problems with Jones’ approach.

1. Genotype X year interaction is not appropriately consid-
ered.

2. A genotypic variance component is used, where it should
not be present.

3. Jones assumes genotypes are random and years fixed,
which is quite unusual. Most researchers will regard
years (environments) as random, while assuming fixed
genotypes (Shukla, 1972).

Also, the procedure is rather complicated because it assumes
that errors (including random interactions) of different years are
correlated. For the moment, we will adhere to Jones’ assumptions
and discuss the errors listed in Problems 1 and 2. Afterwards,
a modification of Jones” method is suggested which assumes fixed
genotypes and random environments (this addresses Problem
3). We drop the assumption of correlated errors and discuss
alternative procedures under this simplified model.

To outline Problems 1 and 2, we take a glance at the model
used by Jones (1988) in which

X,-j=u-+_-t.-+vj+e,j, 8}
where X; = mean of all replicates of annual yield for variety
J in test year i,

u = fixed overall mean,

= fixed effect of test year i,
= random effect of variety j,

and e; = random measurement error of variety j in test year
i, including any interaction between year i and variety j. All
random effects are taken to be normally distributed. It is

assumed that cov (e, ey)
(Vj, e;,) = 0.

Jones (1988) points out that test years may be correlated
to varying degrees because of similarities in climate, weather,
or soil; this is certainly a point to be considered. Therefore,
cov (e, eiy) is allowed to differ from zero. Jones’ method is
rather complicated mainly because of this assumption. Matters
simplify considerably, if we assume that cov (e;, e) = O.
This simple case will be discussed later.

For a companson of two varieties, Jones (1988) suggests
the statistic z given by

= y-j — Y .
[var(3,; — y.1'*

Here, y; and y, are standardized values of observations X;
and X, the yields of varieties j and ¢ in year § (see below).
Means ¥; and y. are computed across all years in which the
corresponding variety was grown. Regarding z as a standard
normal deviate, the probability of finding a z-value larger than
the observed z when the jth cultivar is equal to the check c,
is computed from a table of the normal distribution. If this
probability is smaller than 5%, it is concluded that the jth
cultivar is in fact better than the check. The procedure is
equivalent to a test of the null hypothesis that the jth cultivar
is not better than the check. Xs are standardized by subtracting
the test year grand mean (Method 1), or the mean of two
check varieties (Method 2), and dividing by the standard error
of a variety mean (s; = SEM). The SEM is calculated from
the least significant difference (LSD) of each test year according
to the formula SEM = LSD(0.05)/ [#(0.05) x 1.414].

The aim of the standardization is to make y; a random
deviate with unit variance. This is not achieved if there are
variety X year interactions. The reason is that s; is estimated
from the residual mean square of the corresponding test year.
This mean square is an estimate of the error variance of
that year. It does not include the (random) variety X year
interaction, which is confounded with variety effects in the
variety means of a test year. For a comparison of variety
means over several years, we need to consider all random
variability across years, which is composed of interaction and
error effects.

To clarify the point, consider the model used by Jones (1988).
The random deviation e; in Eq. [1] may be expressed as

= cov (v, vy) = cov (v}, &) = cov

e; = tv; + &,
where
tvy = interaction of variety j with year i and
&y = mean error of variety j in year i.

The complete model for observations X; becomes

] X,j=ll+t.'+Vj+fV,j+8U. 2]
For standardization, Jones (1988) suggests substracting from
X, an estimate of ¥ + ; (obtained by either Method 1 or
Method 2) and dividing by s, the standard error of a mean
in test year i. Here, we will use population values instead of
estimates and compute
Xi—u—1t

Yi = py
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We have
){,-,-—(u+t;)=‘:,-+tvu+s,~,~'==2.-,-.
For a given genotype j, Z; has variance
o = var(Zy) = var (tvy) + var (&) = oh + ok,

where o} = var (tv;) is the year X variety interaction variance
and of = var (gy) is the error of a variety mean in year i.
The standardized values y; = Zyi/o; = (X; — u — r)lo; are
normally distributed with unit variance. To put it clearly,.this
statement refers to the variability of y;s measured in different
years. For practical purposes , #;, o! could be replaced by
appropriate estimates as suggested by Jones (1988). In the
presence of interaction, however, s = (SEM)? is not an
estimator of o7, since it only estimates o2. It underestimates
the variability of Z; across years, because interaction is not
taken account of, Therefore, the standardization proposed by
Jones (1988) leads to y; values which have a variance larger
than unity. As a result, the estimated probabilities of exceeding
the observed z-values will be in error.

Another problem is that Jones (1988) assumes cov (y;, yiy) =
[a? + cov (e;,e:))/a:0;-, where o is the variance of random
variety effects v,. This is not cotrect, since we consider the
variance of the mean (taken across years i) of one single variety
J» which is independent of the variance o2 of varieties included
in the analysis. Clearly, for a given variety j, the effect v; in the
expression y; = (v; + ¢;)/0; does not change with i, and hence
o should not be present in the expression for cov (y;, ys).

Alternatives

I was unable to modify Jones’ procedure, keeping the as-
sumption of correlated errors and regarding genotypes as fixed
and environments as random. It appears that a modification
would require additional constraints on the correlation struc-
ture, which is common in time series analyses. One may take
the simplified view that similarities between years are reflected
by similar year effects # and need not be modelled by a
covariance between e;s. It would be useful to test the null
hypothesis that cov (e, e;;) equals zero for every i,i’, but this
author is not aware of any procedure for this problem.

If we assume cov (e;, e;) = 0 for all i,i’, and o? = o2 for
all i as is usually done, the variance of a difference becomes

o + o? + o} +0? 2n.o?
n; ne nin.

var(X; ~ X.) = ,» 13
where of is the variance of 1, n; (n) is the number of test
years for variety j (c), and n is the number of years in which
variety j and ¢ were tested together. (It is observed that for
m = n. = n; this simplifies to the variance for the paired
I-test.) With uncorrelated errors, o? and 62 may be estimated
by standard procedures (Searle et al., 1992). SAS PROC
VARCOMP and PROC MIXED provide such estimates (SAS

Institute, 1989 and 1992). These estimates are then used to
estimate

=X - X)varX,; - X..).

The estimate approximately follows a standard normal distribu-
tion. It may be used to test equality of variety j and check c.
SAS PROC MIXED may be used to obtain a weighted least
squares analysis. One would analyse all available means X;;.
The following SAS code will do the appropriate computations:
PROC MIXED;
CLASS CULTIVAR YEAR,;

MODEL YIELD = CULTIVAR;

RANDOM YEAR;

RUN;

By default, SAS computes REML (Restricted Maximum
Likelihood) estimates of the variance components, but the
METHOD option allows one to obtain ML (Maximum Likeli-
hood) estimates and MIVQUEs (Minimum Variance Quadratic
Unbiased Estimates) as well (SAS Institute, 1992). Differences
among individual cultivars may be tested using the CON-
TRAST statement.

The weighted least squares approach is problematic, if only
few degrees of freedom are available for estimating &?, i.e.,
if only few test years are available. It may be a better procedure
to compute the paired r-test, with only those years during
which the two genotypes to be compared were grown together
(Bradley et al., 1988). The paired t~test discards the yield data
of years in which the test variety was not grown, so not all
information is exploited. In the example given by Jones (1988)
this would mean discarding between 9 and 23 of 35 yr. The
main advantage is that one does not need to estimate o2,
Moreover we may relax the assumptions regarding the interac-
tion plus error effects. So far we have assumed that 62 = var
(tv;) + var (g;) = 63 + o2 is equal for all varieties. It is
often observed, however, that the interaction variance var (tvy)
varies among varieties. This means that the variance o? =
var(tv;) + ol is not necessarily constant for all varieties. In
fact, of is often considered a measure of phenotypic stability
of variety j (Shukla 1972; Lin et al. 1986), and numerous
investigations have revealed a heterogeneity in the ¢} s (Kang
and Miller 1984; Gravois et al. 1990). It is noted that heteroge-
neity of the variances o} and o2 does not invalidate the paired
1-test.

All procedures described here are also applicable if a variety
is to be compared to the mean of several checks. In the computa-
tions for the paired -test one simply has to replace X, by the
mean of checks in year i{. Using PROC MIXED one has to
define an appropriate contrast including several checks. For
three checks, e.g., the coefficients would be 3 for the variety
under consideration and — 1 for each of the checks.

In summary, this author would prefer the paired r-test in
case ofs are very heterogeneous and/or only a few test years
are available. Otherwise, the weighted least squares procedure
is probably more efficient.

The focus of Jones’ approach is on identifying the best
genotypes for a particular location and assessing variability
across years. For this purpose, only yield data gathered at that
particular site are of interest. A general problem, however,
is that the selection of the best genotypes is typically made
after 2 or 3 yr of testing, while Jones’ approach requires many
more years in order to obtain reasonably accurate results. For
good estimates of of and o2, at least 10 (preferably more)
years of testing are necessary. The same problem exists for
the paired t-test and the weighted least squares approach. By
the time enough data is gathered, the new cultivar will probably
be obsolete.

Most plant breeders are not interested in particular environ-
ments but rather seek genotypes with broad adaptability. Prom-
ising genotypes are therefore usually tested in many locations,
and recently there has been a tendency to reduce replications
per location in favor of an increased number of locations
(Bradley et al., 1988). In this case, plenty of data are available
for head-to-head comparisons across environments by the
paired #-test, and only 2 or 3 yr of testing are required.
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A Response to the Letter to the Editor from H.-P. Piepho

H.-P. Piepho has pointed out an error of importance in the
Jones (1988) paper regarding standardization of data. This
error is easily corrected by (i) standardizing data with the
standard error calculated from the combined data set rather
than the standard error of individual test years and (if) assuming
homogeneous error variances among test years. The procedure
is referred to as the revised probability method for comparing
varieties against checks. This response presents the revised
probability method (model and assumptions). This is followed
by comments regarding (i) a misunderstanding concerning the
use of a covariance term in the probability method, (ii) the
analogous nature of Piepho’s Eq. [3] to [10] of Jones (1988), and
(iii) the unintended use of the probability method to compare
breeder’s lines, a research activity, rather than the intended
use to compare varicties against checks in variety testing as
traditionally practiced in the USA, an extension activity. Fi-
nally, the procedure derived by Piepho in his letter, the paired
t test advocated by Bradley et al. (1988), and the revised
probability method, are discussed in the context of the extension
activity of variety testing.

Revised Probability Method
Model

LctY.;=u+l,'+v,-+e,;,-,
where
Y;= mean of all replicates of annual yield for variety j in test
year i,
p = fixed overall mean,

= random effect of test year i,
v; = fixed effect of variety j, and

e; = random measurement error of variety j in test year i,
including any interaction between ¢, and v;.

If all ¥;s are coded by subtracting (L + 7)) and standardized
by dividing by s,, the square root of the mean square error
of ¥, then

Vi—fi-i v+e
LR it [
Sy Sy

This revised model differs in three respects from the original
1988 model.

1. As suggested by Piepho, test years are considered ran-
dom, rather than fixed as before. For the variety testing
application test years are considered a form of replication.
While varieties under test usually represent a good sample
of varieties available to producers in the geographic area
for which the testing location corresponds, consideration
of varieties as fixed is appropriate because the objective
is estimation and comparison of means (Eisenhart, 1947).

2. Standardization is accomplished by dividing by the square
root of the mean square error of the overall analysis
across test years (s,) instead of dividing data from each
test year by its individual standard error (s;), derived from
the least-significant difference, as before. This solves the
problem of improper standardization, which led to errors
in probability estimates, as stated by Piepho in the latter
portion of the next to last paragraph of his Problems
section. Note that coding is done as before.

3. Hats are omitted from v;, e;, and s, (formerly s in
Eq. [1] because their inclusion before was statistically
incorrect.

Yi =

Because of increased accessibility to automated computation
since 1988, i.e., SAS is available on personal computers,
and because this revision uses a standardization parameter s,
estimated from a data set combined across test years, calculation
of the numerator of the test statistic with least-square means
(LSM) is convenient (col. 1, p. 908; Eq. [5], col. 2, p. 910).
Unlike the original 1988 method, the combined data set needed
to calculate the LSMs has been assembled in order to calcu-
late s,.

Assumptions

Assumptions are the same as in 1988 except for the additional
assumption that the e;s (errors of all combinations of test years
and varieties) are identically normally distributed with mean =
0 and variance = g2, estimated by s,. This differs from before
when only the error terms within a test year were required to
be identical. As before, we assume cov (e, ;) = 0 but allow
cov (ej, ) to vary from zero. Thus the variance-covariance
matrix of (e, e:;) consists of diagonal elements (i = i") equal
to one, because of the assumption of equal variances of test
years and standardization with s, calculated from the combined
data set, and off-diagonal elements (i # i) which may or may
not equal zero.

This model retains the feature of a single error term o?,
which Piepho expresses as 63 + o2. It is emphasized that the
presence of the o} term is recognized, but it is not separated
from o?. Changing the standardization to s,, the square root
of the mean square error of a standard ANOVA table, accom-
plishes two things. First, it utilizes all available information
regarding variation of the error term. Thus a more stable
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estimate is obtained. Second, the estimate in this case is an
unbiased estimate of

ok + ol
Thus it no longer underestimates error variance. This change
effectively eliminates underestimation of the variability of

coded values as pointed out by Piepho. Derivation of this
result is available upon request from the authors.

Comment 1

Piepho is correct in pointing out that the term 62, which
appears in the numerator of the equation near the center of
column 1, p. 911 of the 1988 paper, should be deleted. As
he states in the last paragraph of the Problems section of his
letter, for a given variety j, the effect v; does not change
with i, Thus it has no variance. Given this fact and the new
assumption made in the revision,

vite; v+ey
ri = cov (yy, yi;) = cov (—’—’ , ’—-J>

Sy Sy
_ cov (ey, e) 2]
2 ,
instead of
ol + cov (e, €r))

AYAYd
as before.
Comment 2

Regarding Piepho's final expression of the variance of the
difference between two means (Eq. [3]), namely

o? + ¢? + 6l + 0  2nm.0f

n; ne njn, ’
if 6] = 0 because data are coded, 0> = 1 because data are
standardized, ys are substituted for Xs in recognition of coding

and standardization, and n; is substituted for n., then this
expression becomes

var ()_(, - Xc) =

- = 1 1
var(y, = yj) = — + —,
n ny
the expression in the 1988 paper (col. 1, p. 912).

This expression was derived from Eq. [10] (col. 2, p- 911)
under the additional assumption, cov (ey, e;)) = 0. Thus Eq.
[10] and Piepho's Eq. (3] differ only by the allowance for the
covariance term to vary from zero.

As noted by both Piepho in his letter and Jones in the
Reduction to a Familiar Expression section at the end of the
1988 manuscript, if the two ns are equal and cov (e, e;) =
0, the variance of the difference between two means becomes
20%/n, a familiar expression. Both the revision here and the
WLS (weighted least-squares) procedure of Piepho assume
homogeneity of error variances across test years. But unlike
Piepho’s Eq. [3], the probability method requires no estimation
of variance components because data have been coded and
standardized, simplifying the calculation.

Comment 3

The 1988 paper was directed to the analysis of what is
commonly referred to in this country as variety test data,
namely comparison of released varieties in tests conducted by
state agriculture experiment stations and financed by fees paid
for by the proprietary firms whose released varieties are being

evaluated. This is made clear in the introduction (p. 907) by a
thorough discussion of variety testing by the 12 state agriculture
experiment stations which participate in the Central Alfalfa
Improvement Conference. In addition, the example presented
in Tables 1 and 2 (p. 908) and Fig. 1 (p. 909) was calculated
from alfalfa variety test data collected by the lowa State Agri-
culture Experiment Station.

In contrast, Piepho's letter regards testing of breeder’s lines,
a component of a breeding program. This is also the context
of the Bradley et al. (1988) paper, which discusses the paired
t test, recommended by Piepho as a preferred alternative. A
genuine difference in objectives and approach exists between
the in-house testing of lines before release, a research activity,
and variety tests conducted by state agriculture experiment
stations, an extension activity. Again, Piepho's letter and Brad-
ley et al.’s paper pertain to the former situation, while Jones’
paper pertains to the latter.

The objective of in-house testing is to identify the breeder
or proprietary firm's best material for potential release. As
stated by Piepho, time is of the essence so superior materials
may be introduced as quickly as possible. Decisions are made
based on data collected at a multiplicity of locations to help
achieve broad adaptation. The objective of variety tests con-
ducted by state agriculture experiment stations is altogether
different. Insofar as possible, a testing location utilized by the
agriculture experiment station has been chosen to represent a
reasonably well defined intrastate geographical region’s cli-
matic and edaphic features. This is tantamount to the statement
in the first paragraph of the introduction of the 1988 paper,
“Combining results across tests conducted at a single location
or across locations known not to exhibit significant amounts
of nonrandom, predictable genotype X location interaction is
desirable.”

This is a logical approach for varieties already available
for sale to the public because the user of the extension variety
test report is interested in how well a certain variety is likely
to perform at his location. Information detailed in these reports
is generally considered more reliable than data offered by the
proprietary firms themselves because it is assembled by the
presumably unbiased state agriculture experiment station. Be-
cause this approach has worked so well in the past, it is unlikely
to be substantially altered in the foreseeable future.

One to several locations may be utilized in a state, but test
results are reported separately for each location(s) correspond-
ing to the above-described geographical region. Of greatest
interest is combining test-year data within the geographical
region. The intent of the 1988 paper was to describe a method
to accomplish this goal. The criticism that the method is
irrelevant because the number of years is prohibitive is mean-
ingless because the material being tested by the agriculture
experiment station is already available for sale to the public.
Furthermore, the method showed in the alfalfa example that
only seven test years were necessary to evaluate these varieties
rather than the 12 to 23 test years of data accumulated for the
15 proprietary varieties. Another point to be considered is that
these multiple test years need not be sequential. They may
overlap, as described for the alfalfa example in the first para-
graph of Materials and Methods (Jones, 1988). The same
approach could be applied with annual crops by varying date
of planting or some other management variable appropriate to
the geographical region. For either annuals or perennials,
additional locations representative of the geographical region
could be used.

A further issue concerns Shukla’s (1972) stability parameter.
We assume that the e;s are identically normally distributed
with mean = 0 and variance = o + o, regardless of variety.
As Piepho has pointed out, this is incompatible with the Shukia
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stability parameter concept. However, the goal of variety test-
ing and the probability method is to distinguish between perfor-
mance of released varieties for a reasonably well defined
geographical area. From this point of view, stability parameters
do not hold the intrinsic importance they would if the objective
were to evaluate breeder’s lines over a wide geographical area.
The test year functions as a form of replication in variety
testing as well as an environment in the sense considered in
the stability parameter literature. Therefore; in our minds it
is logical to retain this assumption for the variety testing
application.

Discussion of the Three Methods
1. Piepho’s WLS Procedure

This procedure assumes the e;s are identically normally
distributed with mean = 0 and variance = o2, If the weights
have large variances, WLS can cause very large errors in
estimates. It is commonly accepted that a somewhat biased
estimate with a small variance is preferred over a less biased
estimate with large variance. In practical variety testing situa-
tions, acceptably accurate weights will generally be unavailable
because of insufficient sample size. Assuming cov (e, e)) =
0 as Piepho suggests still requires estimation of 62 and ¢?,
despite the fact that Eq. [3] is structurally analogous to the 1988
Eq. [10], which requires no variance component estimation, as
detailed in Comment 2.

2. Paired ¢ Test

This approach is obvious. It has the advantage of being
easily applied statistically because of its simplicity. Unfortu-
nately, this same feature requires much of the data in unbal-
anced data sets to be excluded. As a procedure, then, it puts

us firmly back at the proverbial square one as far as dealing
with the challenge of unbalanced data in variety testing.

3. Revised Probability Method

The revision, as opposed to the method as first proposed
(Jones, 1988), requires the assumption of a homogeneous o
across test years and varieties. This permits standardization
with the common o?, but at the same time downplays the
importance of variation in stability of varieties, a disadvantage
in the eyes of some. However, the revised probability method
permits cov (e, ;) to differ from zero without requiring
statistical exercises in estimation, as does Piepho's WLS proce-
dure. This revision has the advantage over the paired ¢ test of
permitting inclusion of all available data in calculation of the
test statistic.
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